Sporulation capability and amylosome conservation among diverse human colonic and rumen isolates of the keystone starch‐degrader Ruminococcus bromii

نویسندگان

  • Indrani Mukhopadhya
  • Sarah Moraïs
  • Jenny Laverde-Gomez
  • Paul O Sheridan
  • Alan W Walker
  • William Kelly
  • Athol V Klieve
  • Diane Ouwerkerk
  • Sylvia H Duncan
  • Petra Louis
  • Nicole Koropatkin
  • Darrell Cockburn
  • Ryan Kibler
  • Philip J Cooper
  • Carlos Sandoval
  • Emmanuelle Crost
  • Nathalie Juge
  • Edward A Bayer
  • Harry J Flint
چکیده

Ruminococcus bromii is a dominant member of the human colonic microbiota that plays a 'keystone' role in degrading dietary resistant starch. Recent evidence from one strain has uncovered a unique cell surface 'amylosome' complex that organizes starch-degrading enzymes. New genome analysis presented here reveals further features of this complex and shows remarkable conservation of amylosome components between human colonic strains from three different continents and a R. bromii strain from the rumen of Australian cattle. These R. bromii strains encode a narrow spectrum of carbohydrate active enzymes (CAZymes) that reflect extreme specialization in starch utilization. Starch hydrolysis products are taken up mainly as oligosaccharides, with only one strain able to grow on glucose. The human strains, but not the rumen strain, also possess transporters that allow growth on galactose and fructose. R. bromii strains possess a full complement of sporulation and spore germination genes and we demonstrate the ability to form spores that survive exposure to air. Spore formation is likely to be a critical factor in the ecology of this nutritionally highly specialized bacterium, which was previously regarded as 'non-sporing', helping to explain its widespread occurrence in the gut microbiota through the ability to transmit between hosts.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unique Organization of Extracellular Amylases into Amylosomes in the Resistant Starch-Utilizing Human Colonic Firmicutes Bacterium Ruminococcus bromii

UNLABELLED Ruminococcus bromii is a dominant member of the human gut microbiota that plays a key role in releasing energy from dietary starches that escape digestion by host enzymes via its exceptional activity against particulate "resistant" starches. Genomic analysis of R. bromii shows that it is highly specialized, with 15 of its 21 glycoside hydrolases belonging to one family (GH13). We fou...

متن کامل

Phylotypes related to Ruminococcus bromii are abundant in the large bowel of humans and increase in response to a diet high in resistant starch.

To further understand how diets containing high levels of fibre protect against colorectal cancer, we examined the effects of diets high in nonstarch polysaccharides (NSP) or high in NSP plus resistant starch (RS) on the composition of the faecal microbial community in 46 healthy adults in a randomized crossover intervention study. Changes in bacterial populations were examined using denaturing...

متن کامل

Urease assay and urease-producing species of anaerobes in the bovine rumen and human feces.

A growth medium and test were developed for rapid detection of urease in fermentative anaerobic bacteria. Using nonselective rumen fluid roll-tube agar medium and the new test, it was confirmed that Peptostreptococcus productus is often the most numerous urease-forming species in human feces. Also, some fecal strains of Ruminococcus albus, Clostridium innocuum, and Clostridium beijerinckii prod...

متن کامل

Nutritional features of the intestinal anaerobe Ruminococcus bromii.

Of six strains of Ruminococcus bromii studied, five grew in a minimal chemically defined medium containing minerals, NH(4) (+) as nitrogen source, sulfide or sulfate as sulfur source, fructose as energy and carbon source, isobutyrate or 2-methylbutyrate and carbonic acid-bicarbonate as additional carbon sources, and the vitamins biotin, riboflavin, pyridoxine, vitamin B(12) (replaced by L-methi...

متن کامل

Responses in colonic microbial community and gene expression of pigs to a long-term high resistant starch diet

Intake of raw potato starch (RPS) has been associated with various intestinal health benefits, but knowledge of its mechanism in a long-term is limited. The aim of this study was to investigate the effects of long-term intake of RPS on microbial composition, genes expression profiles in the colon of pigs. Thirty-six Duroc × Landrace × Large White growing barrows were randomly allocated to corn ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2018